ADAPTABLE HOUSE ANTI-SWAY CONTROL MECHATRONICS

INTRODUCTION

Background

This project aims to develop a mobility assistance system for individuals with mobility challenges by providing supportive environments

Figure 1: Desktop-Model of System

Problem Definition: The goal of Anti-Sway is to develop a system that supports lateral movement at varying levels of weight support, while providing as little hindrance to the user as possible

Design Requirements

- Safe during operation
- Provides various degrees of support
- Intuitive control (hands off when possible)

DESIGN & IMPLEMENTATION Controls Anti-Sway Mode Tracking Mode System Follows Remote Control System Follows User Figure 2: Anti-Sway Mode Control Law Figure 1: Tracking Mode Control Law

MECHANICAL ENGINEERING

UNIVERSITY of WASHINGTON

Mechanical

Frame/Support:

- A Modified Laser Printer!!!!
- Trolley & Pendulum

Control Logic/Instruments:

- Angle Sensor
- Motor & Encoder
- MyRIO Microcontroller

Figure 4: CAD of Potentiometer Mount

Figure 5: Potentiometer (Model STC22E)

Figure 6: Maxon Motor 273759

Software

Features:

- Finite State (Turing) Machine to navigate Modes
- Auto Position/Angular Calibration
- Multipurpose Control Library
- Keypad Control (Anti-Sway Mode)

Limits:

- Positional: 0.350 m x 0.350 m
- Velocity: 1 m/s

Figure 3: Free Body Diagram of Pendulum System

Electrical

Potentiometer (Angle):

- 1% tolerance linearity
- 6mm shaft diameter
- 10k resistor
- Amplifier Circuit to reduce noise

Motor Requirements:

- max RPM: 1671
- max torque: 80mN*m
- max amp: 0.728 A
- max voltage: 1.775 V

typedef struct { Proportional gain; double prev_input; double prev_output; Integrator; Figure 7: Integrator Data Structure

RESULTS/VALIDATION

Anti-Sway Mode

Acknowledgements:

Adaptable House: Mary Meyer², Stan Chiu² Professor: Joseph Garbini¹

Tracking Mode

Figure 8a: User v. Theoretical v. Experimental Tracking Mode Position Comparison

Figure 9b: Theoretical vs Experimental Data Using Anti-Sway Mode

• Control Logic match theory with near negligible error • High Accuracy sensors are necessary for controllers • Encoder Signals fail for mysterious reason

• Integration with Lift Control for full 3D support • Data Control (Mutual Exclusion) for Parallel Modes • Build & Test System at Full Scale

Mechanical Engineering Capstone Exposition

May 29th 2024, Husky Union Building, University of Washington, Seattle